FGF-23/Klotho轴与慢性肾脏病的研究进展*
·综述·
FGF-23/Klotho轴与慢性肾脏病的研究进展*
朱万胜1 综述 吴道全1、2 杨舸2 审校
(1,西南医科大学,四川 泸州 646000;2.内江市第二人民医院肾内科,四川 内江 641100)
【摘要】成纤维细胞生长因子-23(Fibroblast growth factor-23,FGF-23)是一种调节磷和活性维生素D(1,25(OH)2D)代谢的一种骨源性激素。FGF-23在其共受体Klotho的协同下与成纤维细胞生长因子受体-1(Fibroblast growth factor receptor-1,FGFR-1)结合,通过提高肾脏对磷的排泄,维持血清磷水平在正常范围内。此外,FGF-23还能减少1,25(OH)2D的合成和促进其降解,从而减少肠道对磷的吸收。而且,FGF-23还可作用于甲状旁腺,减少甲状旁腺激素(PTH)的合成及其分泌。在慢性肾脏病(CKD)的发展进程中,在血清磷浓度升高发生的很早之前,随着肾功能降低,血清FGF-23水平就明显升高,而血清Klotho却显著降低。目前研究表明FGF-23/Klotho轴与CKD病程中的钙磷代谢紊乱、继发性甲状旁腺功能亢进症(Secondary hyperparathyroidism,SHPT)和心血管疾病(Cardiovascular diseases,CVD)等并发症密切相关,在慢性肾脏病-矿物质及骨代谢异常(CKD-MBD)的发生发展中起重要作用。近年来,对FGF-23/Klotho轴与CKD关系不断的深入研究,为CKD-MBD的诊断和治疗带来了新的视角。本文旨在就FGF-23/Klotho轴与CKD的研究进展作一综述。
【关键词】成纤维细胞生长因子-23;Klotho;慢性肾脏病;继发性甲状旁腺功能亢进症
慢性肾脏病(Chronic kidney disease,CKD)发病率日益上升,且预后较差,如何早期诊断和处理好CKD患者的各种并发症已经成为影响其生命和生活质量的重要因素,慢性肾脏病-矿物质和骨代谢异常(Chronic kidney disease-mineral and bone metabolism disorder,CKD-MBD)即为其中之一[1]。CKD-MBD包括以下三种异常:①钙、磷、甲状旁腺激素(Parathyroid hormone,PTH)和维生素D(VitD)代谢异常。②骨转运、骨矿化、骨容量和骨的生长异常。③血管和软组织钙化[2],上述三方面的异常无不与CKD患者的预后密切相关,严重影响CKD患者的生存质量。目前已有研究表明,FGF-23/Klotho轴在CKD-MBD的病理生理机制中起了重要作用。近年来,随着研究的不断深入,这一领域向我们展示了更加丰富的视野,为CKD及其SHPT、CVD等并发症的早期诊断和治疗带来了许多新启示,本文就FGF-23/Klotho轴与CKD的研究进展作如下综述。
1 FGF-23和Klotho的生物学特性
FGF-23属于内分泌性成纤维细胞生长因子家族中的一员[3],其基因定位于12号染色体,是一种由251个氨基酸组成,分子量32kDa的蛋白,它主要由骨细胞和成骨细胞合成分泌[4-5],其mRNA也在其他组织中表达,包括肝脏、心肌、甲状旁腺。研究表明,FGF-23与常染色体显性遗传性低磷血症佝偻病、X-连锁低磷性佝偻病、肿瘤性骨软化症均有关[6]。动物实验研究发现,FGF-23基因缺陷小鼠表现为高钙血症、高磷血症、异位钙化、严重骨质疏松[7];相反,FGF-23过表达小鼠则表现出低磷血症、佝偻病、骨软化等[8]。上述研究表明FGF-23可能与钙磷代谢密切相关,在多种矿物质骨疾病的发病中起重要作用。
Klotho是Kuro-o等发现的抑制衰老相关的基因,并以纺织生命之线的希腊女神—Klotho命名[9]。该基因主要在肾远曲小管、甲状旁腺、脉络丛中表达,最近发现其在血管、巨噬细胞中也有表达[9-11],其编码的蛋白也命名为Klotho,分为膜型和分泌型,其中分泌型Klotho(sKlotho)可在血液、尿液、脑脊液中检测到[12-13]。研究表明Klotho具有广泛而重要的生物学作用,膜型klotho(mKlotho)可作为FGF-23必需的受体辅助因子参与磷的调节,而sKlotho则能独立发挥多项作用,如通过抑制Wnt和胰岛素/胰岛素样生长因子-1(IGF-1)路径信号途径及抗氧化应激、抗炎、抗纤维化而发挥抗衰老和组织保护作用[14-17];通过抑制血管钙化和刺激内皮细胞中一氧化氮的合成而保护血管[18]等。
动物研究发现,FGF-23基因缺陷小鼠和Klotho基因突变小鼠表现出相似的表型,包括寿命缩短、性腺功能减退、骨密度降低或骨质疏松、异位钙化、高钙血症、高磷血症和VitD水平升高[7,9,14]等,这是否表明二者具有相同的信号通路呢?的确,现已确定mKlotho是FGF-23发挥其生物学活性必需的辅助因子,mKlotho可增强FGF-23与其受体FGFR-1的亲和力,协同FGF-23对磷、VitD和PTH代谢的进行调节[14,19],并且有学者提出了在骨-肾-甲状旁腺轴中起重要作用的FGF-23/Klotho轴的概念[18]。
2 FGF-23/Klotho轴与钙、磷、VitD和PTH代谢
理想的磷平衡状态对细胞信号传导、能量代谢、骨矿化等许多生理功能都至关重要。生理性磷平衡的维持需要骨、肾、小肠、甲状腺的相互作用。磷在小肠的吸收有赖于钠-磷协同转运体-2b(NaPi-2b)的促进作用,1,25(OH)2D可增加NaPi-2b在小肠的表达,而促进磷的吸收。类似地,磷在肾小管的重吸收主要由钠-磷协同转运体NaPi-2a和NaPi-2c来完成。PTH则可抑制近端小管上NaPi依赖的磷吸收而增加尿磷排泄。新型调磷因子FGF-23、Klotho可与传统的调磷因子PTH和VitD相互作用参与磷的调节。
FGF-23与mKlotho-FGFR-1复合物结合,一方面,可抑制近端小管上NaPi-2a和NaPi-2c的表达,减少肾小管磷的重吸收[20];另一方面,还可通过抑制1α-羟化酶和刺激24-羟化酶,减少肾脏1,25(OH)2D的产生[14,21],由此减少肠道对钙、磷的吸收。此外,最近有研究发现,FGF-23还可以在FGFR/sKlotho的协同下,促进远端小管TRPV5对钙的重吸收[22]。有研究显示sKlotho还可直接抑制NaPi-2a在近端小管上表达[23]发挥独立于FGF-23的调磷作用。可见FGF-23及Klotho与钙磷代谢密切相关。1,25(OH)2D与其核受体(VDR)结合可上调骨源性FGF-23的产生[24]。FGF-23的水平也受磷摄入的影响,有动物实验表明,高磷饮食可增加5/6肾切除SD大鼠血清磷和血清FGF-23水平[25];另一项在三个不同地区人群中进行的横断面研究表明,FGF-23水平与饮食中磷的摄入量和磷排泄分数呈正相关,与血磷无相关性[26]。Klotho和FGFR-1在甲状旁腺均有表达,Klotho和FGF-23对PTH的作用显得更为复杂。FGF-23可通过一种Klotho依赖的机制激活FGFR-1,进而抑制PTH的分泌[27];FGF-23还可通过上调甲状旁腺组织中活性1,25(OH)2D受体(VDR)的表达,从而抑制PTH的产生,因为活性1,25(OH)2D可与VDR结合,抑制PTH的基因转录[28-29]。然而,研究发现Klotho却可通过调节Na+-K+ ATP酶的活性,以一种独立于FGF-23的方式促进PTH的合成、分泌[27-30]。相反,PTH却可促进FGF-23的产生,研究表明PTH替代治疗对甲状旁腺切除大鼠FGF-23表现为剂量依赖性增加作用[31],最近也有研究发现,PTH可通过激活孤儿核受体相关因子1(Nurr1),增加骨细胞中FGF-23的转录[32]。上述研究均说明FGF-23及Klotho的表达均会影响PTH的分泌,进而对钙磷代谢产生重要影响。
3 FGF-23/Klotho轴与CKD
3.1 CKD中FGF-23、Klotho的异常表达 FGF-23升高和Klotho下降常常在CKD早中期就开始出现,明显早于血磷和PTH的升高[33-37]。Klotho主要在肾脏表达,作为其主要的来源器官之一[38],在肾功能不全初期就可能会导致Klotho表达减少,有CKD动物模型和CKD患者肾活检组织研究发现Klotho蛋白和/或Klotho mRNA表达均降低[10,39-41]。在CKD的很早期,随着完整肾单位数量的逐渐减少,FGF-23逐渐升高,这被认为是机体为维持系统性磷平衡而做出的适应性代偿性反应[6,39,42]。升高的FGF-23可通过FGF-23-Klotho信号介导提高尿磷排泄,还可降低1,25(OH)2D水平,从而减少肠道对钙磷的吸收,使血磷维持正常。随着CKD的进展,进一步减少的Klotho不足以支持FGF-23—Klotho信号,所以FGF-23不能代偿肾衰竭相关性磷潴留,高磷血症随即发生,并促进FGF-23分泌进一步增加[39]。研究发现肾移植后患者同时合并高FGF-23和低磷血症,且随着肾移植后的时间推移,FGF-23水平越低,而磷逐渐升高至正常,可支持上述观点[43]。许多研究[33-37]均认为FGF-23升高和Klotho下降可作为CKD的一项早期生物标记物,为CKD进展的有效监测和早期干预治疗带来新的希望。
3.2 FGF-23/Klotho与SHPT 众所周知,SHPT是CKD的主要并发症。传统的观点认为低钙血症、高磷血症和1,25(OH)2D缺乏是SHPT的刺激因素,因为升高的FGF-23降低1,25(OH)2D[39],导致VitD对PTH基因转录的抑制作用减弱和持续性低钙血症,为了维持系统性钙平衡,钙敏感受体会介导甲状旁腺增生,PTH的产生增加[42,6]。给CKD大鼠注射FGF-23抗体以中和FGF-23,阻止了1,25(OH)2D降低和SHPT进展,血钙升高,支持上述假说[44]。但最近的研究发现尿毒症患者甲状旁腺组织中Klotho和FGFR1表达均下降[45-46],而PTH的分泌明显升高,这表明由于Klotho和FGFR1 缺乏,导致作用于甲状旁腺的FGF-23—Klotho信号中断, PTH分泌异常升高,可能是SHPT的发展中的重要因素[6],而升高的PTH又进一步促进骨中FGF-23的产生。
3.3 FGF-23/Klotho与CVD CKD是CVD,包括左心室肥厚(LVH)、血管钙化、高血压等心血管疾病的主要风险,而CVD又是CKD患者主要的死亡原因。近年来,FGF-23/Klotho与CKD患者CVD的关系也日益引起人们的关注。Stevens[47]等,以“金标准”方法CMRI评估CKD患者FGF-23与LVH的关系发现,FGF-23浓度与LVMI(左心室重量指数)呈正相关,FGF-23是CKD患者LVH的独立预测因子。同时,他们以人脐静脉内皮细胞为标本,通过体外实验表明FGF-23对内皮功能紊乱和LVH有直接的促进作用。类似地,Milovanova[34、48]等研究发现在CKD患者中,高FGF-23水平和高LVM(左心室质量)之间有直接相关性,且在高血压患者中最显著,降低的Klotho水平和增厚的左室后壁则表现出很强的负相关性。也有研究[34、48]发现,CKD患者血压升高程度与FGF-23呈正相关,与Klotho呈负相关,这均可促进CKD患者LVH的进展,导致左心功能障碍。Yu J[41]等的动物实验则发现,尿毒症小鼠动脉粥样硬化的发生伴随着Klotho表达的下降。在一项维持性血液透析患者中进行的横断面研究中[49],sKlotho较对照组明显降低,合并低sKlotho的患者颈动脉内膜中层厚度(CIMT)增加,左心功能障碍和冠状动脉疾病(CAD)发生率增高,通过回归分析表明sKlotho与CIMT、CAD和LVEF(左室射血分数)呈显著独立相关。另一项临床研究也发现[50],轻中度CKD患者的主动脉钙化程度与FGF-23呈正相关,与Klotho呈负相关。Lim[51]等对人类动脉和主动脉平滑肌细胞进行研究发现,血管细胞也是FGF-23的一种Klotho依赖靶组织,CKD在实质上是一种血管Klotho缺乏的状态,CKD患者高水平的FGF-23不能发挥血管保护作用是由于Klotho/FGFR缺乏介导的抵抗效应。该研究还发现,VDR激活剂治疗能够通过上调血管Klotho的表达,而介导FGF-23的抗血管钙化作用。上述研究结果表明,FGF-23/Klotho与CKD患者CVD的发病密切相关,可能也是CKD患者CVD的一项敏感的预测因子,并且可能成为CKD患者CVD治疗的新靶点。
3.4 FGF-23/Klotho与CKD进展及预后 目前对于FGF-23/Klotho轴,引人关注的还有其作为肾病进展预测指标的作用。许多研究发现,早在CKD2期就检测到FGF-23升高和Klotho降低,远早于磷和PTH的改变,并随着肾功下降不断进展,且血清Klotho水平与肾小球滤过率(Glomerular filtration rate,GFR)呈正比,血清FGF-23浓度与GFR呈反比[33-37]。这些研究结果表明FGF-23/Klotho可能与CKD的进展有关,可以作为CKD早期识别和监测进展的一项新型生物标志物[33-37]。结合前文所述,FGF-23/Klotho轴与CKD预后密切相关的主要并发症,如钙磷代谢紊乱、SHPT和 CVD都有紧密联系。此外,有研究发现FGF-23的升高是CKD患者发展至ESRD和死亡率的独立危险因素[52],也有研究指出升高的FGF-23也是肾移植患者术后失功和死亡的独立风险因素[53],同时有研究认为Klotho也有望成为预测CKD预后的一项敏感的早期标记物[54]。
4 小结与展望
目前许多研究表明早在CKD2期开始Klotho和FGF-23就随着GFR降低而出现改变,并且与CKD的SHPT、CVD等并发症密切相关,对CKD早期诊断、并发症预测、预后判断具有重要意义。但也有冲突的研究结论提出[55],也可能客观存在FGF-23/Klotho检测试剂盒质量不统一、检测方法不足[56-57]等问题,因此FGF-23、Klotho能否作为CKD实用可靠的早期标记物仍值得进一步研究。另一方面,随着对FGF-23/Klotho与CKD相关性的深入研究,也为CKD-MBD的治疗带来了新的启示。例如,对CKD大鼠注射FGF-23抗体,可改善SHPT、提高血清VitD和Ca浓度,但出现了FGF-23抗体剂量依赖性的血磷升高和主动脉瓣钙化[44],这提示我们今后可研究FGF-23基因消融配合饮食磷限制和/或磷结合剂是否可以改善CKD预后。再如,Lim[51]等研究发现,VDR激活剂治疗可提高血管Klotho的表达,有助于FGF-23抗血管钙化,这也为抗CKD血管钙化的治疗提供了新的思路。目前CKD动物模型研究发现Klotho恢复可改善肾病和肾外并发症[57],这提示我们可以通过对Klotho实施外源性干预,发挥其肾脏和肾外组织的保护作用,对CKD治疗很有前途。总之,FGF-23/Klotho的发现及其与CKD相互关系的深入研究提升了我们对CKD-MBD的理解,为CKD-MBD的诊断和治疗开拓了新的前景。我们未来的研究主题仍然是FGF-23/Klotho轴作为CKD及其并发症诊断和治疗新靶点的临床实用性和可靠性。
【参考文献】
[1]刘志红,李贵森.重视慢性肾脏病-矿物质和骨异常的诊断和治疗[J].肾脏病与透析肾移植杂志,2013,22(6):501-503.
[2]陈楠.CKD-MBD的诊断是否必须依赖骨活检[J].肾脏病与透析肾移植杂志,2015,24(2):150-151.
[3]Itoh,Nobuyuki.Hormone-like (endocrine) Fgfs: their evolutionary history and roles in development, metabolism,and disease[J].Cell Tissue Res,2010,342(1): 1-11.
[4]Mirams M,Robinson BG,Mason RS.Bone as a source of FGF23:regulation by phosphate[J]. Bone,2004,35(5):1192-1199.
[5]Liu S,Zhou J,Tang W.Pathogenic role of FGF-23 in Hyp mice[J].Am J Physiol Endocrinol Metab,2006,291(01):E38-E49.
[6]Olauson H , Vervloet MG , Cozzolino M,et al.New insights into the FGF-23-Klotho axis[J].Semin Nephrol,2014,34 (6):586-597.
[7]Hesse M, Fr, hlich LF, Zeitz U,et al.Ablation of vitamin D signaling rescues bone, mineral, and glucose homeostasis in Fgf-23 deficient mice[J].Matrix Biol,2007,26(2):75-84.
[8]Marsell R, Krajisnik T, G ransson H, et al.Gene expression analysis of kidneys from transgenic mice expressing fibroblast growth factor-23[J].Nephrol Dial Transplant,2008,23(3):827-833.
[9]Kuro-o M, Matsumura Y, Aizawa H, et al.Mutation of the mouse klotho gene leads to a syndrome resembling ageing[J].Nature,1997,390 (6655):45-51.
[10] Ritter CS, Zhang S, Delmez J, et al.Differential expression and regulation of Klotho by paricalcitol in the kidney, parathyroid and aorta of uremic rats[J].Kidney Int,2015,87(6):1141-1152.
[11] Han X, Li L, Yang J,et al.Counter-regulatory paracrine actions of FGF-23 and 1,25(OH)2D in macrophages[J].FEBS Lett,2016,590(1):53-67.
[12] Yamazaki Y, Imura A, Urakawa I,et al.Establishment of sandwich ELISA for soluble alpha-Klotho measurement: age-dependent change of soluble alpha-Klotho levels in healthy subjects[J].Biochem Biophys Res Commun,2010,398(3):513-518.
[13] Kunert SK, Hartmann H, Haffner D, et al.Klotho and fibroblast growth factor 23 in cerebrospinal fluid in children[J].J Bone Miner Metab,2016 Mar 26.
[14] Kuro-o M.Klotho[J].Pflugers Arch,2010,459(2):333-343.
[15] Zhou X, Chen K, Lei H,et al.Klotho gene deficiency causes salt-sensitive hypertension via monocyte chemotactic protein-1/CC chemokine receptor 2-mediated inflammation[J].J Am Soc Nephrol,2015,26(1):121-132.
[16] Deng M, Luo Y, Li Y, et al.Klotho gene delivery ameliorates renal hypertrophy and fibrosis in streptozotocin-induced diabetic rats by suppressing the Rho-associated coiledcoil kinase signaling pathway[J].Mol Med Rep,2015,12(1):45-54.
[17] Kim JH, Hwang KH, Park KS,et al.Biological Role of Anti-aging Protein Klotho[J].J Lifestyle Med,2015,5(1):1-6.
[18] Donate-Correa J, Muros-de-Fuentes M, Mora-Fernández C,et al.FGF-23/Klotho axis: phosphorus, mineral metabolism beyond[J].Cytokine Growth Factor Rev,2012,23(1-2):37-46.
[19] Dai B, David V, Martin A, et al.A Comparative Transcriptome Analysis Identifying FGF-23 Regulated Genes in the Kidney of a Mouse CKD Model[J].PLoS One,2012,7(9):e44161.
[20] Gattineni J, Bates C, Twombley K,et al.FGF-23 decreases renal NaPi-2a and NaPi-2c expression and induces hypophosphatemia in vivo predominantly via FGF-receptor-1[J].Am J Physiol Renal Physiol,2009,297(2):F282-291.
[21] Shimada T, Hasegawa H, Yamazaki Y,et al.FGF-23 is a potent regulator of vitamin D metabolism and phosphate homeostasis[J].J Bone Miner Res,2004,19(3):429-435.
[22] Andrukhova O, Smorodchenko A, Egerbacher M, et al.FGF-23 promotes renal calcium reabsorption through the TRPV5 channel[J].EMBOJ,2014,3;33(3):229-246.
[23] Hu MC, Shi M, Zhang J, Pastor J,et al.Klotho: a novel phosphaturic substance acting as an autocrine enzyme in the renal proximal tubule[J].FASEB J,2010,24(9):3438-3450.
[24] Saini RK, Kaneko I, Jurutka PW,et al.1,25-dihydroxyvitamin D(3) regulation of fibroblast growth factor-23 expression in bone cells: evidence for primary and secondary mechanisms modulated by leptin and interleukin-6[J].Calcif Tissue Int,2013,92(4):339-353.
[25] Wu-Wong JR, Chen YW, Gaffin R, et al.VS-501: a novel, nonabsorbed, calcium- and aluminum-free, highly effective phosphate binder derived from natural plant polymer[J].Pharmacol Res Perspect,2014,2(3).
[26] Yuen SN, Kramer H, Luke A,et al.Fibroblast Growth Factor-23 (FGF-23) Levels Differ Across Populations by Degree of Industrialization[J].J Clin Endocrinol Metab,2016,101(5):2246-2253.
[27] Drüeke TB.Klotho, FGF-23, fgf receptors in chronic kidney disease: A yin-yang situation[J] Kidney Int,2010,78(11):1057-1060.
[28]Westerberg PA, Ljunggren O, Larsson TE, et al.Fibroblast growth factor-23 and mineral metabolism after unilateral nephrectomy[J].Nephrol Dial Transplant,2010,25(12):4068-4071.
[29] Ritter CS, Brown AJ.Direct suppression of Pth gene expression by the vitamin D prohormones doxercalciferol and calcidiol requires the vitamin D receptor[J].J Mol Endocrinol,2011,46(2):63-66.
[30] Hofman-Bang J, Martuseviciene G, Santini MA,et al.Increased parathyroid expression of klotho in uremic rats[J].Kidney Int,2010,78(11):1119-1127.
[31] López I, Rodríguez-Ortiz ME, Almadén Y, et al.Direct and indirect effects of parathyroid hormone on circulating levels of fibroblast growth factor 23 in vivo[J].Kidney Int,2011,80(5):475-482.
[32] Meir T, Durlacher K, Pan Z,et al.PTH activates the orphan nuclear receptor Nurr1 to induce FGF-23 transcription[J].KidneyInt,2014,86(6):1106-1115.
[33] Rotondi S, Pasquali M, Tartaglione L, et al.Soluble a-klotho serum levels in chronic kidney disease[J].Int J Endocrinol,2015,2015:872193.
[34] Milovanova LIu, Milovanov IuS, Kudriavtseva DV,et al.Role of the morphogenetic proteins FGF-23 and Klotho and the glycoprotein sclerostin in the assessment of the risk of cardiovascular diseases and the prognosis of chronic kidney disease[J].Ter Arkh,2015,87(6):10-16.
[35] Milovanova LIu, Milovanov IuS, Kozlovskaia LV,et al.Significance of the morphogenetic proteins FGF-23 and Klotho as predictors of prognosis of chronic kidney disease[J].Ter Arkh,2014,86(4):36-44.
[36] Pavik I, Jaeger P, Ebner L,et al.Secreted Klotho and FGF-23 in chronic kidney disease Stage 1 to 5: a sequence suggested from a cross-sectional study[J].Nephrol Dial Transplant,2013,28(2):352-359.
[37] Kim HR, Nam BY, Kim DW, et al.Circulating α-klotho levels in CKD and relationship to progression[J].Am J Kidney Dis,2013,61(6):899-909.
[38] Akimoto T, Kimura T, Watanabe Y,et al.The Impact of Nephrectomy and Renal Transplantation on Serum Levels of Soluble Klotho Protein[J].Transplant Proc,2013,45(1):134-136.
[39] Sakan H, Nakatani K, Asai O,et al.Reduced renal α-Klotho expression in CKD patients and its effect on renal phosphate handling and vitamin D metabolism[J].PLoS One,2014,9(1):e86301.
[40] Asai O, Nakatani K, Tanaka T, et al.Decreased renal alpha-klotho expression in early diabetic nephropathy in humans and mice and its possible role in urinary calcium excretion[J].Kidney Int,2012,81(6):539-547.
[41] Yu J, Deng M, Zhao J, et al.Decreased expression of klotho gene in uremic atherosclerosis in apolipoprotein E-deficient mice[J].Biochem Biophys Res Commun,2010,391(1):261-266.
[42] Nitta K, Nagano N, Tsuchiya K.Fibroblast Growth Factor 23/Klotho Axis in Chronic Kidney Disease[J].Nephron Clin Pract,2014,128(1-2):1-10.
[43] Sawires HK, Essam RM, Morgan MF, et al.Serum Klotho: Relation to Fibroblast Growth Factor-23 and Other Regulators of Phosphate Metabolism in Children with Chronic Kidney Disease[J].Nephron,2015,129(4):293-299.
[44] Shalhoub V,Shatzen EM, Ward SC,et al.FGF-23 neutralization improves chronic kidney disease-associated hyperparathyroidism yet increases mortality[J].J Clin Invest,2012,122 (7): 2543-2553.
[45] Krajisnik T, Olauson H, Mirza MA,et al.Parathyroid klotho and fgf-receptor 1 expression decline with renal function in hyperparathyroid patients with chronic kidney disease and kidney transplant recipients[J].Kidney Int,2010,78(10):1024-1032.
[46] Komaba H, Goto S, Fujii H, et al.Depressed expression of klotho and fgf receptor 1 in hyperplastic parathyroid glands from uremic patients[J].Kidney Int,2010,77(3):232-238.
[47] Stevens KK, McQuarrie EP, Sands W,et al.Fibroblast Growth Factor 23 Predicts Left Ventricular Mass and Induces Cell Adhesion Molecule Formation[J].Int J Nephrol,2011,2011:297070.
[48] Milovanova LIu, Milovanov IuS, Kozlovskaia LV,et al.New markers of cardio-renal links in chronic kidney disease[J].Ter Arkh,2013,85(6):17-24.
[49] Abdallah E, Mosbah O, Khalifa G, et al.Assessment of the relationship between serum soluble klotho and carotid intima media thickness and left ventricular dysfunction in hemodialysis patients[J].Kidney Res Clin Pract,2016,35(1):42-49.
[50] Di Lullo L, Gorini A, Bellasi A,et al.Fibroblast growth factor 23 and parathyroid hormone predict extent of aortic valve calcifications in patients with mild to moderate chronic kidney disease[J].Clin Kidney J,2015,8(6):732-736.
[51] Lim K, Lu TS, Molostvov G,et al.Vascular Klotho Deficiency Potentiates the Development of Human Artery Calcification and Mediates Resistance to Fibroblast Growth Factor 23[J].Circulation,2012,125(18):2243-2255.
[52] Isakova T, Xie H, Yang W, et al.Fibroblast growth factor 23 and risks of mortality and end-stage renal disease in patients with chronic kidney disease[J].JAMA,2011,305(23):2432-2439.
[53] Wolf M, Molnar MZ, Amaral AP,et al.Elevated fibroblast growth factor 23 is a risk factor for kidney transplant loss and mortality[J].J Am Soc Nephrol,2011,22(5):956-966.
[54] Hu MC, Kuro-o M, Moe OW.The emerging role of Klotho in clinical nephrology[J].Nephrol Dial Transplant,2012,27(7):2650-2657.
[55] Seiler S, Wen M, Roth HJ, et al.Plasma Klotho is not related to kidney function and does not predict adverse outcome in patients with chronic kidney disease[J].Kidney Int,2013,83(1):121-128.
[56] Heijboer AC, Blankenstein MA, Hoenderop J, et al.Laboratory aspects of circulating α-Klotho[J].Nephrol Dial Transplant,2013,28(9):2283-2287.
[57] Barker SL, Pastor J, Carranza D, et al.The demonstration of αKlotho deficiency in human chronic kidney disease with a novel synthetic antibody[J].Nephrol Dial Transplant,2015,30(2):223-233.
Research status and the development of FGF-23/Klotho axis and chronic kidney disease
ZHU Wansheng1reviewing WU Daoquan1、2, YANG Ge2checking
(1 Southwest Medical University, Luzhou 646000, Sichuan, China;2 Neijiang Second People’s Hospital, Neijiang 641100, Sichuan, China)
【Abstract】Fibroblast growth factor-23 (FGF-23) is one kind of osteogenic hormone that can adjust the metabolism of phosphor and 1,25(OH)2D. FGF-23 combines with fibroblast growth factor receptors 1 (FGFR1) by coordinating with co-receptor Klotho and maintains serum phosphor within normal limits by increasing renal excretion of phosphor. Besides, FGF-23 can reduce synthesis of 1,25(OH)2D and promotes its degradation to reduce intestinal absorption of phosphor.Moreover, FGF-23 can reduce synthesis and secretion of parathyroid hormone, (PTH) by affecting parathyroid glands. Before serum phosphor increasing, serum FGF-23 increases obviously and serum Klotho reduces significantly with the reduction of renal function in chronic kidney disease (CKD).Current research shows that FGF-23/Klotho axis is firm related with disorders of calcium and phosphorus metabolism, secondary hyperparathyroidism (SHPT) and cardiovascular diseases (CVD) in the development of CKD.FGF-23/Klotho axis may play a key role in the development of chronic kidney disease-mineral and bone disorder (CKD-MBD).Further study on the relationship between FGF-23/Klotho axis and CKD provides a new visual angle for CKD-MBD diagnosis and treatment. This article reviews the research status and the development of FGF-23/Klotho axis and CKD.
【Key words】Fibroblast growth factor-23;Klotho;Chronic kidney disease;Secondary hyperparathyroidism
基金项目:四川省医学会科研课题(S16043)
通讯作者:吴道全,主任医师,本刊编委,E-mail:[email protected]
【中图分类号】R691
【文献标志码】A
doi:10.3969/j.issn.1672-3511.2017.04.033
(收稿日期:2017-01-03;编辑:何兴华)