篆体字网 > 知识库

st18iroot

来源:篆体字网 2023-12-28 06:08:37 作者:篆字君

男,

一个长大了才会遇到的帅哥,

稳健,潇洒,大方,靠谱。

一段生信缘,一棵技能树。

生信技能树核心成员,单细胞天地特约撰稿人,简书创作者,单细胞数据科学家。

空间信息在空间转录组中的运用
Giotto|| 空间表达数据分析工具箱
SPOTlight || 用NMF解卷积空间表达数据
Seurat新版教程:分析空间转录组数据(上)
Seurat新版教程:分析空间转录组数据(下)
scanpy教程:空间转录组数据分析
10X Visium:空间转录组样本制备到数据分析
定量免疫浸润在单细胞研究中的应用

stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissues

空间转录组学是一种新兴的技术,它将空间信息和组织形态以及表达量融合成空间表达数据。整合这三种类型的数据极大地丰富了人们的想象力,寄希破译细胞类型在其原生背景下的新状态。在这里我们向大家演示stLearn:一个综合分析以上三种数据类型的python库,stLearn首先像分析单细胞转录组一样识别细胞类型,不同的是stLearn可以在空间中重建组织内的细胞类型演变(Spatial trajectory inference ),并识别具有细胞间相互作用(Spatial cell-cell interaction)的区域。

stLearn的创新之处在于:

SME normalisation :(Spatial Morphological gene Expression normalisation,空间基因表达均一化)是一种组织内的均一化策略,它利用邻域信息(空间位置)和形态距离对基因表达数据进行均一化。试图把空间信息应用到数据分析的全流程。

SMEclust:stLearn使用SME归一化数据,进行无监督聚类,将相似的点聚到聚类中,并根据组织中聚类的空间信息找到子类。与其他方法相比,SMEclust具有更高的空间聚类性能。

spatial trajectory inference :这部分是此演示文本的重点,我们将在下面描述之。

spatial cell-cell interactions:为了研究细胞-细胞相互作用(CCI),stLearn将细胞类型多样性和L-R共表达结合成一个统计量,可用于自动扫描整个组织切片。stLearn分别计算了L-R表达和细胞类型多样性,最后将这两种分析合并,以发现对细胞-细胞相互作用有重要作用的L-R对。

下面是stLearn分析流程的框架:

切入今天我们主要讨论的主题:空间轨迹推断

我们曾经表明:单细胞的一切分析 加前缀Spatial 都是一个新的分析点。trajectory 当然不会例外。

为了发现组织过程——例如,回答哪个癌细胞或克隆最先出现,或者癌症是如何进化的——stLearn提供了一种称为伪时空(pseudo-space-time, PST)轨迹分析的算法。PST是scRNAseq数据分析中常用的伪时间(pseudotime)概念的一个扩展,它被设计用来检测生物过程,这些生物过程可以从跨组织转录状态的梯度变化来推断。在PST中,进化轨迹是基于组织内细胞的空间环境和转录组图谱重建的。在SMEclust分析之后,我们实现了PST算法来寻找组织局部层次(即单个亚群的子群之间的关系)和全局层次(即亚群之间的关系),分别对应亚群内部和亚群之间的关系。

stLearn首先使用基于全组织SME 均一化基因表达数据的PAGA轨迹分析,用于发现亚群内的联系。然后,利用稳健的轨迹推断方法——扩散伪时间(diffusion pseudotime , DPT)方法计算伪时间。DPT方法使用类似随机游走的方法来测量细胞到细胞的转移。对于轨迹的方向,用户可以根据组织中正在研究的生物过程来定义根节点。然后结合基因表达值和物理距离计算伪时空距离( pseudo-space-time distance,PSTD)。在此基础上,构建有向图,像monocle一样寻找分支的方法类似:利用有向最小生成树算法对图进行优化,找出图中连接节点最短有根树和分支。可见,空间轨迹推断也是一种排序分析,只是构建距离矩阵的方法不同,这里的距离用到了空间信息。

工具安装:https://stlearn.readthedocs.io/en/latest/installation.html

数据下载:https://support.10xgenomics.com/spatial-gene-expression/datasets/1.0.0/V1_Adult_Mouse_Brain

安装分析工具和下载示例数据之后我们开始做演示:

可见 stlearn 用的是和scanpy一样的数据结构,其实stlearn的很多函数也是调用scanpy的,所以scanpy的所有分析在这里也是完全做的,如:

基本上与单细胞预处理一样的过程,质控,均一化,标准化过程。

降维聚类:

有了聚类信息可以看看分群情况:

只画几个亚群:

绘制基因表达量:

在特定亚群的表达情况:

基本的数据探索之后,我们开始做空间轨迹推断。注意,这里和单细胞转录组一样,根节点的选择也是很重要的。

没有空间信息的轨迹(拟时序)。

st.spatial.trajectory.pseudotimespace_local函数可以构造局部轨迹, 该算法计算子类之间的时空距离。可以理解为亚群内部的轨迹(异质性)。

可以看出指定的亚群内各部分间的转移轨迹,并给出对应的score值和方向。

欲构建全局的轨迹可以用:

有了在空间中的轨迹(形成不同的分支),我们肯定想知道哪些基因决定了这种轨迹,stLearn可以检测分支间过渡的marker gene。像差异表达分析的结果一样会返回一个gene list,这就可以走向基因调控,代谢通路之中了。

思考题:

考察下图,有了空间信息并检测出亚群边界后,这些边界附近的细胞有没有什么特殊的特征(处于边界本身就是一种特征),请尝试提出一些统计量来描述这些特征及其拟说明的生物学问题。

stLearn: integrating spatial location, tissue morphology and gene expression to find cell types, cell-cell interactions and spatial trajectories within undissociated tissuestrajectories: Classes and Methods for TrajectoryDataPAGA: graph abstraction reconciles clustering with trajectory inference through a topology preserving map of single cellsTempora: cell trajectory inference using time-series single-cell RNA sequencing dataA comparison of single-cell trajectory inference methodsInference of multiple trajectories in single cell RNA-seq data from RNA velocityUntangling biological factors influencing trajectory inference from single cell data

References

https://en.wikipedia.org/wiki/Trajectory_inference
https://www.youtube.com/watch?v=Fbd08bIv4yk
https://github.com/mdozmorov/scRNA-seq_notes
https://stlearn.readthedocs.io/en/latest/Pseudo-space-time-tutorial.html

如果你对单细胞转录组研究感兴趣,但又不知道如何入门,也许你可以关注一下下面的课程

单细胞初级8讲和高级分析8讲

老板,请为我配一个懂生信的师兄

数据挖掘(GEO,TCGA,单细胞)第10期(今年最后一期)

上一篇:91电脑助手iphone版

下一篇:dnf剑魔二觉加点

相关阅读